Edge-coloring Vertex-weightings of Graphs

نویسندگان

چکیده مقاله:

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'))))$ for any two adjacent edges $e$ and $echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39')))$. Denote by $muchr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39')))(G)$ the minimum $k$ for $G$ to admit an edge-coloring $k$-vertex weightings. In this paper, we determine $muchr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39')))(G)$ for some classes of graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex-coloring edge-weightings of graphs

A k-edge-weighting of a graph G is a mapping w : E(G) → {1, 2, . . . , k}. An edgeweighting w induces a vertex coloring fw : V (G) → N defined by fw(v) = ∑ v∈e w(e). An edge-weighting w is vertex-coloring if fw(u) 6= fw(v) for any edge uv. The current paper studies the parameter μ(G), which is the minimum k for which G has a vertexcoloring k-edge-weighting. Exact values of μ(G) are determined f...

متن کامل

On the complexity of vertex-coloring edge-weightings

Given a graph G = (V,E) and a weight function w : E → R, a coloring of vertices of G, induced by w, is defined by χw(v) = ∑ e3v w(e) for all v ∈ V . In this paper, we show that determining whether a particular graph has a weighting of the edges from {1, 2} that induces a proper vertex coloring is NP-complete.

متن کامل

Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture

A weighting of the edges of a graph is called vertexcoloring if the weighted degrees of the vertices yield a proper coloring of the graph. In this paper we show that such a weighting is possible from the weight set {1, 2, 3, 4, 5} for all graphs not containing components with exactly 2 vertices. All graphs in this note are finite and simple. For notation not defined here we refer the reader to ...

متن کامل

Vertex Coloring of Graphs by Total 2-Weightings

An assignment of real weights to the edges and the vertices of a graph is a vertexcoloring total weighting if the total weight sums at the vertices are distinct for any two adjacent vertices. Of interest in this paper is the existence of vertex-coloring total weightings with weight set of cardinality two, a problem motivated by the conjecture that every graph has a such a weighting using the we...

متن کامل

Vertex-Colouring Edge-Weightings

A weighting w of the edges of a graph G induces a colouring of the vertices of G where the colour of vertex v, denoted cv, is ∑ e3v w(e). We show that the edges of every graph that does not contain a component isomorphic to K2 can be weighted from the set {1, . . . , 30} such that in the resulting vertex-colouring of G, for every edge (u, v) of G, cu 6= cv.

متن کامل

Vertex-coloring 2-edge-weighting of graphs

A k-edge-weighting w of a graph G is an assignment of an integer weight, w(e) ∈ {1, . . . , k}, to each edge e. An edge weighting naturally induces a vertex coloring c by defining c(u) = ∑ u∼e w(e) for every u ∈ V (G). A k-edge-weighting of a graph G is vertexcoloring if the induced coloring c is proper, i.e., c(u) ≠ c(v) for any edge uv ∈ E(G). Given a graph G and a vertex coloring c0, does th...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 16  شماره 1

صفحات  1- 13

تاریخ انتشار 2021-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023